OLED又称为有机电激光显示、有机发光半导体,OLED的制备工艺实际上是功能薄膜工艺和表面处理工艺的结合。不同的发光材料需要不同的器件制备工艺、下面我们就以有机小分子OLED为例,简单描述有机电致发光器件的制备方法及工艺流程。


1.OLED结构及发光原理


OLED基本结构是在铟锡氧化物(ITO)玻璃上制作一层几十纳米厚的有机发光材料作为发光层,发光层上方有一层低功函数的金属电极,构成类似三明治的结构。


OLED的基本结构主要包括:



基板(透明塑料、玻璃、金属箔)——基层用来支撑整个OLED。


阳极(透明)——阳极在电流流过设备时消除电子(增加电子“空穴”)。


空穴传输层——该层由有机材料分子构成,这些分子传输由阳极而来的“空穴”。


发光层——该层由有机材料分子(不同于导电层)构成,发光过程在这一层进行。


电子传输层——该层由有机材料分子构成,这些分子传输由阴极而来的“电子”。


阴极(可以是透明的,也可以不透明,视OLED类型而定)——当设备内有电流流通时,阴极会将电子注入电路。


OLED是双注入型发光器件,在外界电压的驱动下,由电极注入的电子和空穴在发光层中复合形成处于束缚能级的电子空穴对即激子,激子辐射退激发发出光子,产生可见光。为增强电子和空穴的注入和传输能力,通常在ITO与发光层之间增加一层空穴传输层,在发光层与金属电极之间增加一层电子传输层,从而提高发光性能。其中,空穴由阳极注入,电子由阴极注入。空穴在有机材料的最高占据分子轨道(HOMO)上跳跃传输,电子在有机材料的最低未占据分子轨道(LUMO)上跳跃传输。


OLED的发光过程通常有以下5个基本阶段:



载流子注入:在外加电场作用下,电子和空穴分别从阴极和阳极向夹在电极之间的有机功能层注入。


载流子传输:注入的电子和空穴分别从电子传输层和空穴传输层向发光层迁移。


载流子复合:电子和空穴注入到发光层后,由于库伦力的作用束缚在一起形成电子空穴对,即激子。


激子迁移:由于电子和空穴传输的不平衡,激子的主要形成区域通常不会覆盖整个发光层,因而会由于浓度梯度产生扩散迁移。


激子辐射退激发出光子:激子辐射跃迁,发出光子,释放能量。


OLED发光的颜色取决于发光层有机分子的类型,在同一片OLED上放置几种有机薄膜,就构成彩色显示器。光的亮度或强度取决于发光材料的性能以及施加电流的大小,对同一OLED,电流越大,光的亮度就越高。


2.OLED的制造原理


OLED组件系由n型有机材料、p型有机材料、阴极金属及阳极金属所构成。电子(空穴)由阴极(阳极)注入,经过n型(p型)有机材料传导至发光层(一般为n型材料),经由再结合而放光。一般而言,OLED元件制作的玻璃基板上先溅镀ITO作为阳极,再以真空热蒸镀之方式,依序镀上p型和n型有机材料,及低功函数之金属阴极。由于有机材料易与水气或氧气作用,产生暗点(Dark spot)而使元件不发亮。因此此元件于真空镀膜完毕后,必须于无水气及氧气之环境下进行封装工艺。


在阴极金属与阳极ITO之间,目前广为应用的元件结构一般而言可分为5层。如图所示,从靠近ITO侧依序为:空穴注入层、空穴传输层、发光层、电子传输层、电子注入层。


而至于电子传输层,系为n型之有机材料,其特性为具有较高之电子迁移率,当电子由电子传输层至空穴电子传输层介面时,由于电子传输层之最低非占据分子轨域较空穴传输层之LUMO高出甚多,电子不易跨越此一能障进入空穴传输层,遂被阻挡于此介面。此时空穴由空穴传输层传至介面附近与电子再结合而产生激子(Exciton),而Exciton会以放光及非放光之形式进行能量释放。以一般萤光材料系统而言,由选择率之计算仅得25%之电子空穴对系以放光之形式做再结合,其余75%之能量则以放热之形式散逸。近年来,正积极被开发磷光材料成为新一代的OLED材料,此类材料可打破选择率之限制,以提高内部量子效率至接近100%。


在两层元件中,n型有机材料-即电子传输层-亦同时被当作发光层,其发光波长系由HOMO及LUMO之能量差所决定。然而,好的电子传输层-即电子迁移率高的材料-并不一定为放光效率佳之材料,因此目前一般之做法,系将高萤光度的有机色料,掺杂(Doped)于电子传输层中靠近空穴传输层之部分,又称为发光层,其体积比约为1%至3%。掺杂技术开发系用于增强原材料之萤光量子吸收率的重点技术,一般所选择的材料为萤光量子吸收率高的染料。


阴极之金属材料,传统上系使用低功函数之金属材料(或合金),如镁合金,以利电子由阴极注入至电子传输层,此外一种普遍之做法,系导入一层电子注入层,其构成为一极薄之低功函数金属卤化物或氧化物,如LiF或Li2O,此可大幅降低阴极与电子传输层之能障,降低驱动电压。


由于空穴传输层材料之HOMO值与ITO仍有差距,此外ITO阳极在长时间操作后,有可能释放出氧气,并破坏有机层产生暗点。故在ITO及空穴传输层之间,插入一空穴注入层,其HOMO值恰介于ITO及空穴传输层之间,有利于空穴注入OLED元件,且其薄膜之特性可阻隔ITO中之氧气进入OLED元件,以延长元件寿命。


3.OLED的制备工艺


OLED因其构造简单,所以生产流程不像LCD制造程序那样繁复。但由于现今OLED制程设备还在不断改良阶段,并没有统一标准的量产技术,而主动与被动驱动以及全彩化方法的不同都会影响OLED的制程和机组的设计。但是,整个生产过程需要洁净的环境和配套的工艺和设备。改善器件的性能不仅要从构成器件的基础,即材料的化学结构入手,提高材料性能和丰富材料的种类;还要深入了解器件的物理过程和内部的物理机制,有针对性地改进器件的结构以提高器件的性能。两者相辅相成,不断推进OLED技术的发展。


ITO基板预处理工艺


首先需要准备导电性能好和透射率高的导电玻璃,通常使用ITO玻璃。高性能的ITO玻璃加工工艺比较复杂,市面上可以直接买到。ITO作为电极,需要特定的形状、尺寸和图案来满足器件设计的要求,可委托厂家按要求进行切割和通过光刻形成图案,也可在实验室自己进行ITO玻璃的刻蚀,得到所需的基片和电极图形。基片表面的平整度、清洁度都会影响有机薄膜材料的生长情况和OLED性能,必须对ITO表面进行严格清洗。


常用的ITO薄膜表面预处理方法为:化学方法(酸碱处理)和物理方法(O2等离子体处理、惰性气体溅射)。


酸碱处理


固体表面的结构和组成都与内部不同,处于表面的原子或离子表现为配位上的不饱和性,这是由于形成固体表面时被切断的化学键造成的。


正是由于这一原因,固体表面极易吸附外来原子,使表面产生污染。因环境空气中存在大量水份,所以水是固体表面最常见的污染物。


由于金属氧化物表面被切断的化学键为离子键或强极性键,易与极性很强的水分子结合,因此,绝大多数金属氧化物的清洁表面,都是被水吸附污染了的。


在多数情况下,水在金属氧化物表面最终解离吸附生成OH-及H+,其吸附中心分别为表面金属离子以及氧离子。


根据酸碱理论,M+是酸中心,O-是碱中心,此时水解离吸附是在一对酸碱中心进行的。


在对ITO表面的水进行解离之后,再使用酸碱处理ITO金属氧化物表面时,酸中的H+、碱中的OH-分别被碱中心和酸中心吸附,形成一层偶极层,因而改变了ITO表面的功函数。


等离子体处理


等离子体的作用通常是改变表面粗糙度和提高功函数。研究发现,等离子作用对表面粗糙度的影响不大,只能使ITO的均方根粗糙度从1.8nm降到1.6nm,但对功函数的影响却较大。用等离子体处理提高功函数的方法也不尽相同。


氧等离子处理是通过补充ITO表面的氧空位来提高表面氧含量的。


操作方法为:将ITO基片依次在清洗液、去离子水、乙醇和丙酮的混合液、去离子水超声清洗以除去基片表面物理吸附和化学吸附的污染物,然后将清洗干净的基片放到洁净工作台内,烘烤或者用高速喷出的氮气吹干ITO表面,最后对ITO表面进行氧等离子体轰击或者紫外臭氧处理。ITO玻璃的预处理有利于除去ITO表面可能的污染物,提高ITO表面的功函数,减小ITO电极到有机功能材料的空穴注入势垒。


成膜技术


制备OLED材料包括有机小分子、高分子聚合物、金属及合金等。大部分有机小分子薄膜通过真空热蒸镀来制备,可溶性有机小分子和聚合物薄膜可通过更为简单、快速和低成本的溶液法制备,先后开发出了旋涂法、喷涂法、丝网印刷、激光转印等技术。金属及合金薄膜通常采用真空热蒸镀来制备,为了实现全溶液法制备OLED,也开发了基于液态金属如导电银浆刷涂的溶液制备方法。


真空热蒸镀


传统热蒸镀的真空度大致在10-4 Pa以上,真空度越高,形成薄膜的缺陷越少,膜中材料纯度越高。有机材料在真空下加热,依材料特性不同,有些材料会先液化再气化,有些则直接升华,然后以一定的初始速度脱离材料表面向外飞散,运动到ITO表面,冷却沉积下来形成一层薄膜。如果真空度低于10-4 Pa,真空腔内充斥着水分子、氧分子和其他杂质气体在蒸发过程中与有机小分子材料相互碰撞,将严重降低成膜质量,甚至使器件性能降低乃至失效。在OLED研究初期,一般使用机械泵、分子泵联动的两级抽真空系统保证高真空度。近年来,在分子泵之后用溅射离子泵可抽到超高真空来制备高性能OLED。检测腔体真空度的设备有两种:用于测量0.1 Pa以下低真空的热传导真空规,即热偶规和电阻规,用于测量0.1 Pa以上高真空的电离规。功能层的厚度用振荡晶片检测,有机材料的蒸镀速率一般为0.5~2 ?/s;金属的蒸镀速率一般为2~5 ?/s,厚度为80~100 nm。


旋转涂覆


制备有机小分子OLED,蒸镀小分子和金属需要采用真空热蒸镀技术,设备的成本高、维护复杂。有机聚合物的分子量较大且加热时容易分解,因而须采用溶液法制备聚合物薄膜,成本相对较低,且成膜过程简单、快速、薄膜均匀、致密。旋转涂覆法是预先将基片吸附在旋涂仪的旋转台上,然后将预先配制好的溶液滴在基片中央局部或覆盖整个基片,通过基片高速旋转产生的离心力将大部分溶液甩出基片,由于溶液与基片的摩擦力以及溶液本身的黏度,在基片上留下一层薄膜。旋转成膜的厚度主要取决于溶液的浓度、黏度,溶剂的挥发速度,以及旋转速度、旋转时间。溶剂的性质,如沸点、极性等,对聚合物薄膜的形貌有很大影响。旋涂法具备溶液法成膜的优势,但大量的溶液在旋涂的过程中被甩出基片外浪费了,不太适合大面积器件,无法实现全彩显示,因而该技术在大规模量产中并不适用。


喷墨打印


与旋涂相比,喷墨打印技术大大减少了材料的浪费,并能实现图案化、全彩打印,适用于制备大面积器件。例如卷对卷(roll-to-roll, R2R)喷墨印刷设备可以不受基片尺寸的限制,实现大面积器件的制备。喷墨打印是一种非接触、无压力、无印版的印刷技术,预先将各种不同的功能材料制成墨水灌装到墨盒,通过计算机将图文信息转化为数字脉冲信号,然后控制喷嘴移动和墨滴形成,并利用外力将墨滴挤出,墨滴喷射沉积到相应位置形成所需图案,实现精确、定量、定位沉积,完成最终的印制品。喷墨打印技术的关键有墨水的研制、打印头与打印系统的设计、溶剂挥发控制等。其中,高分子聚合物墨水的研制最为重要,因为喷出液滴的均匀性主要取决于墨水的物理特性,如适当的黏性和表面张力。通过喷墨打印技术,可将PLED平板显示器带入大尺寸领域。


激光热转印


激光热转印是一种全彩色AMOLED像素图形制备技术,具有精度高、分辨率高、可靠性好、转印的薄膜厚度均匀、可实现多层薄膜转移、适用于大尺寸基板的优势,是制备高分辨率、大尺寸、全彩色AMOLED的理想方法。激光热转印技术制备AMOLED,是通过一套供体胶片、一组高精度激光成像系统和一副衬底完成。具体过程包括:首先将热转印的供体压在衬底上,供体与衬底受体表面必须紧密接触;然后用激光对供体的成像模板曝光,使成像图案从供体与受体接触的表面向受体传输层释放,最终附着在受体的表面传输层上;最后将供体剥离,完成曝光区域内的高分辨率条纹的印制。大环境下进行的激光热转印技术制备的OLED的效率和色纯度可与真空热蒸镀的小分子OLED相媲美。


阴极工艺


传统的阴极制备方法是将固体块状、条状或丝状银、镁、铝等金属通过真空热蒸镀搭配金属掩膜板得到所需薄膜图形。近年来,由于制备工艺简单、设备成本低,快速发展的湿法制备技术正不断向产业化方向的大规模生产迈进。要实现全湿法制备OLED,阴极的湿法制备工艺需要紧跟有机功能层湿法制备的发展步伐。经过配置墨水、成膜和后处理得到的阴极导电率正逐步逼近真空蒸镀阴极的水平。其中,银纳米颗粒是湿法制备电极的研究热点。


封装技术


提高OLED的寿命达到商业化水平是实现OLED产业化发展的关键问题之一,而水氧和灰尘接触电极甚至有机层会导致OLED的电极出现气泡,工作状态下发光区域出现黑斑,加速器件老化,降低OLED的稳定性。通过器件封装隔绝水氧和灰尘是提高OLED寿命的有效途径。目前常用的封装技术有玻璃或金属盖板封装、薄膜封装、铟封接、熔块熔接密封等。传统的盖板封装是在充满惰性气体的手套箱内,用环氧树脂紫外固化胶将玻璃基板和玻璃或金属盖板粘接,从而将夹在盖板、基板间的有机层和电极密封,隔绝外界大气中的氧气、水汽和灰尘。为了防止密封环境中仍残留少量水氧,可提前加入干燥剂。薄膜封装是采用一定的薄膜沉积技术制备保护层来替代盖板加密封胶的组合。目前薄膜封装包括无机薄膜封装、有机薄膜封装以及有机/无机交替的复合薄膜封装等。铟封接是电真空器件工业中常用的一种软金属真空封接方法,主要用于连接玻璃、陶瓷等材料来完成对器件的密封。铟具有熔点低、塑性好等特点,使铟封接具有许多优势,如封接温度低、兼容性好、封接应力小、精度高等。目前铟封接应用于OLED的封接还处于探索阶段。熔块熔接密封在OLED的封接中得到越来越广泛的应用,是在底层基板上制作OLED像素阵列,在顶层基板上制作面积相当的不透明的熔块层,随后将顶层基板和底层基板面对面放置,中间留有空隙,最后用激光或红外射线通过掩膜板定点照射熔块密封部件,使其熔融连接熔块层和底层基板,同时环状包围电致发光阵列。熔块密封部件再固化后与熔块层以及底层基板形成密封区域,将其中的发光阵列保护。



PMOLED量产工艺


OLED的制备工艺实际上是功能薄膜工艺和表面处理工艺的结合。制备该类器件的关键技术有功能层薄膜,金属电极及透明导电薄膜和保护膜等的制备技术,有机电致发光器件的制备过程决定了器件性能优劣,不同的发光材料需要不同的器件制备工艺、下面我们就以有机小分子OLED为例,简单描述有机电致发光器件的制备方法及工艺流程。

有机小分子OLED一般采用真空热蒸镀的方法进行制备,此类器件(以 PMOLED为例)的阳极通常是采用ITO或者ITO导电玻璃,其制备流程如下:


对ITO玻璃进行处理


ITO作为阳极其表面状态直接影响空穴的注入和与有机薄膜层间的界面电子状态及有机材料的成膜性。如果ITO表面不清洁,其表面自由能变小,从而导致蒸镀在上面的空穴传输材料发生凝聚、成膜不均匀。


ITO表面的处理过程为:洗洁精清洗→乙醇清洗→丙酮清洗→纯水清洗,均用超声波清洗机行清洗,每次洗涤采用清洗5分钟,停止5分钟,分别重复3次的方法。然后再用红外烘箱烘干待用。


对ITO玻璃表面进行处理一定要在干燥的真空环境中进行,处理过的ITO玻璃不能在空气中放置太久,否则 ITO表面就会失去活性。


对ITO玻璃进行蚀刻,制备所需要的阳极图形


作用:线路成型。


蚀刻分为干蚀刻与湿蚀刻,其区别如下:


干蚀刻:利用不易被物理、化学作用破坏的物质光阻来阻挡不欲去除的部分,利用电浆的离子轰击效应和化学反应去掉想去除的部分,从而将所需要的线路图形留在玻璃基板上。干蚀刻等向性蚀刻与异向性蚀刻同时存在。


湿蚀刻:利用化学药液将需要蚀刻掉的物质蚀刻掉。湿蚀刻为等向性蚀刻。湿蚀刻机台便宜,蚀刻速度快,但难以精确控制线宽和 获得极其精细的图形并且需要大量用水,污染大 ;干蚀刻机台价格昂贵,蚀刻速度速度慢,但可以精确控制线宽能获得极其精细的图形,而且 不需要用水,污染小。


进行图案化后的清洗工作


因为器件功能层厚度仅为几十纳米,粒径为微米级的灰尘或异物会造成有机材料无法形成连续薄膜并且影响薄膜表面的平整性,造成器件短路或者击穿:另外,ITO表面一些无机或有机沾染物会影响有机材料在ITO表面的附着性,降低器件性能。所以,OLED器件对TO表面的洁净程度要求很高。


基片清洗的方法有很多,如化学清洗法、超声波清洗法、真空烘烤法和离子击法等。将基片放入含有5%左右洗涤剂的去离子水溶液中,加热至40℃,在70Hz频率下超声波振荡15min,再用40°C去离子水在超声清洗基片15min,然后在常温相同频率下用丙超声振荡基片15min,最后在常温相同频率下用异丙醇超声振荡基片15min。


把经过超声处理后的ITO玻璃从异丙醇中拿出用N2吹干待用。同时,为了提高ITO阳极的功函数,通常把吹干待用的基片放入紫外烘箱中进行紫外光照射处理或进行等离子体轰击处理,在真空情况下送到蒸镀设备进行器件制备。


然后把处理好的ITO玻璃村底放入真空蒸镀腔中


当真空度达到3×10-4Pa以下时开始蒸镀各个有机半导体功能层,最后在有机层的上面蒸镀金属阴极。在有机材料的蒸镀过程中,当有机材料从蒸发源中被加热蒸发出来之后,有机材料分子或金属原子将以一定的初速度脱离材料表面向外飞散,如果这些分子或原子在飞散过程中遇上其他分子,这些被蒸发出来的分子将可能被散射;如果没有碰到气体分子,则一部分被蒸发出的分子将从材料表面匀速直线运动到基板表面,并沉积下来形成一层致密薄膜,薄膜的厚度分布与束源和样品的相对位置及发散角等因素有关。


一般而言,有机小分子在ITO导电玻璃上是均匀层状生长的,而且形成的是无定形薄膜,但是也有岛状生长和类似于传统的分子東外延生长中的准分子束外延生长的有序有机薄膜。


在薄膜的淀积过程中,控制厚度均匀的薄膜和恒定的蒸发速率是非常重要的,通常有机分子的蒸发速率控制在一定范围,如果沉积速率太快,沉积上去的有机分子还来不及通过热振动弛豫能量,便被随后沉积上去的分子覆盖,这样很容易导致分子排列出现缺陷,使薄膜很容易产生针孔现象,因此需要优化设计好蒸镀源的形状、尺寸和与样品之间的距离。


事实上,真空蒸发是在一定压强的残余气体中进行的。真空室内存在两种粒子,种是蒸发物质的原子或分子,另外一种是残余气体分子。这些残余气体分子会对薄膜形成过程乃至薄膜性质产生影响。



如果真空度过低,残余气体分子的量很大,真空蒸发物质原子或分子将与大量空气分子碰撞,会使膜层受到严重污染,甚至被氧化烧毁。如果此时沉积的是金属薄膜,那么这层金属薄膜往往没有金属光泽,表面粗糙,薄膜不均匀不连续。


因此要获得高纯度的薄膜,必须要求残余气体分子很少,宏观上表现为真空腔室的背景压强非常低(高真空度)为了保证现质量,蒸发源到基片的距离为25cm,压强则需低于3x10-3Pa,因此,在实际实验中蒸各功能层时,体压强均保在在真空蒸镜过程中,蒸发速率和薄膜厚度是最重要的两个参数。蒸发速率除与蒸发物质的分子量、绝对温度和蒸发物质在温度了时的饱和蒸气压有关外,还与材料自身的表面清洁度有关。蒸发源温度变化对蒸发速率影响极大,下方公式描述了蒸发速率G随温度了的变化关系:



因此,在进行真空蒸发时,蒸锻源温度的微小变化即可引起蒸发速率发生很大变化。因而在沉积薄膜过程中,必须精确控制蒸发源温度,以控制合适的蒸发速率,同时加热过程中应避免过大温度梯度的产生。实验室常用的通过真空蒸制备OLED的蒸镀系统设备如下图所示。



(备注:1、仪器控制台,2、传送杆,3、O2储气罐,4、离子轰击室,5/8/10、挡板阀,6、有机薄膜蒸镀腔,7、涡轮分子泵,9、金属薄膜蒸镀腔,11、器件封装室,12、膜厚动态监测仪,13,机械泵)



1为仪器控制台,由真空显示台、温控电源、样品架升降电源、机械泵电源,分子泵电源、离子菱击电源、金属蒸发源、快门控制电源组成,主要功能是在整个器件制各过程中显示和调控蒸发速度与蒸发温度等参数;


2是传送杆。


4室为离子轰击室,主要功能是对ITO玻璃基片进行O2离子菱击,完成预处理;


6室为有机薄膜蒸腔,配备涡轮分子泵7作为主泵、机械泵1、机械泵3作为分子泵前级,主要功能是在高真空条件下将有机小分子材料蒸被到ITO基片上;


9室为金属薄膜蒸铍腔,主要功能是将金属蒸到有机功能层上,形成金属或合金电极;


11室为器件封装室,在充满高纯N2的环境下对器件进行封装。


12是膜厚动态监控仪。


13是机械泵。


金属电极的真空蒸镀工艺


金属电极仍要在真空腔中进行蒸镀。金属电极通常使用低功函数的活泼金属,因此在有机材料薄膜蒸镀完成后进行蒸镀。常用的金属电极有Mg/Ag、 Mg:Ag/Ag、Li/Al、LiF /Al等。用于金属电极蒸镀的舟通常采用钼、钽和钨等材料制作,以便用于不同的金属电极蒸镀(主要是防止舟金属与蒸镀金属起化学反应)。  金属电极材料的蒸发一般用加热电流来表示,在我们的真空蒸镀设备上进行蒸镀实验,实验结果表明,金属电极材料的蒸发加热电流一般在70A~100A 之间(个别金属要超过100A)、ITO样品基底温度在80℃左右、蒸发速度在5晶振点~50晶振点/秒(即约0.5nm~5nm/S)、蒸发腔的真空度 在7×10-4Pa~5×10-4Pa时蒸镀的效果较佳。


真空蒸镀主要材料


1、阳极材料

OLED的阳极材料主要作器件的阳极之用,要求其功函数尽可能的高,以便提高空穴的注入效率。OLED器件要求电极必须有一侧是透明的,因此通常选用功函数高的透明材料ITO导电玻璃作阳极。ITO(氧化铟锡)玻璃在400nm~1000nm的波长范围内透过率达80%以上,而且在近紫外区也有很高的透过率。

作为显示器件还要求阳极透明,一般采用的有Au、透明导电聚合物(如聚苯胺)和ITO导电玻璃,常用ITO玻璃。


2、阴极材料

OLED的阴极材料主要作器件的阴极之用,为提高电子的注入效率,应该选用功函数尽可能低的金属材料,因为电子的注入比空穴的注入难度要大些。金属功函数的大小严重的影响着OLED器件的发光效率和使用寿命,金属功函数越低,电子注入就越容易,发光效率就越高;此外,功函数越低,有机/金属界面势垒越低,工作中产生的焦耳热就会越少,器件寿命就会有较大的提高。


OLED的阴极通常采用以下几种:

(1)单层金属阴极。如Ag、Al、Li、Mg、Ca、In等,但它们在空气中很容易被氧化,致使器件不稳定、使用寿命缩短,因此选择合金做阴极或增加缓冲层来避免这一问题。


(2)合金阴极。为了既能提高器件的发光效率,又能得到稳定的器件,通常采用金属合金作为阴极。在蒸发单一金属阴极薄膜时,会形成大量的缺陷,造成耐氧化性变差;而蒸镀合金阴极时,少量的金属会优先扩散到缺陷中,使整个有机层变得很稳定。将性质活泼的低功函数金属和化学性能较稳定的高功函数金属一起蒸发形成金属阴极、如Mg:Ag(10:1),Li:Al (0.6%Li) 合金电极,功函数分别为3.7eV和3.2eV。) 

优点:提高器件量子效率和稳定性;能在有机膜上形成稳定坚固的金属薄膜。


(3)层状阴极。这种阴极是在发光层与金属电极之间加入一层阻挡层,如LiF、CsF、RbF等,它们与Al形成双电极,可得到更高的发光效率和更好的I-V特性曲线。阻挡层可大幅度的提高器件的性能。


(4)掺杂复合型电极

将掺杂有低功函数金属的有机层夹在阴极和有机发光层之间,可大大改善器件性能,其典型器件是ITO/NPD/AlQ/AlQ(Li)/Al,最大亮度可达30000cd/m2,如无掺Li层器件,亮度为3400 cd/m2。


3、缓冲层材料

在OLED中空穴的传输速率约为电子传输速率的两倍,为了防止空穴传输到有机/金属阴极界面引起光的猝灭,在制备器件时需引入缓冲层CuPc。CuPc 作为缓冲层,不仅可以降低ITO/有机层之间的界面势垒,而且还可以增加ITO/有机界面的粘合程度,增大空穴注入接触,抑制空穴向HTL层的注入,使电子和空穴的注入得以平衡。


4、载流子传输材料

OLED器件要求从阳极注入的空穴与从阴极注入的电子能相对平衡的注入到发光层中,也就是要求空穴和电子的注入速率应该基本相同,因此有必要选择合适的空穴与电子传输材料。在器件的工作过程中,由于发热可能会引起传输材料结晶,导致OLED器件性能衰减,所以我们应选择玻璃化温度(Tg)较高的材料作为传输材料。试验中通常选用NPB作为空穴传输层,而选用Alq3作为电子传输材料。


1)空穴输送材料(HTM)

要求HTM有高的热稳定性,与阳极形成小的势垒,能真空蒸镀形成无针孔薄膜。最常用的HTM均为芳香多胺类化合物,主要是三芳胺衍生物。

TPD:N,N′-双(3-甲基苯基)-N,N′-二苯基-1,1′-二苯基-4,4′-二胺* d# 

NPD: N,N′-双(1-奈基)-N,N′-二苯基-1,1′-二苯基-4,4′-二胺; C% \ 


2)电子输运材料(ETM)

要求ETM有适当的电子输运能力,有好的成膜性和稳定性。ETM一般采用具有大的共扼平面的芳香族化合物

如8-羟基喹啉铝(AlQ),1,2,4一三唑衍生物(1,2,4-Triazoles,TAZ),PBD,Beq2,DPVBi等,它们同时又是好的发光材料。


5、发光材料

发光材料是OLED器件中最重要的材料。一般发光材料应该具备发光效率高、最好具有电子或空穴传输性能或者两者兼有、真空蒸镀后可以制成稳定而均匀的薄膜、它们的HOMO和LUMO能量应该与相应的电极相匹配等特性。


在小分子发光材料中,Alq3是直接单独使用作为发光层的材料。还有的是本身不能单独作为发光层,掺杂在另一种基质材料中才能发光,如红光掺杂剂DCJTB,绿光掺杂剂DMQA,蓝光掺杂剂BH1,BD1等。Alq3是一种既可以作为发光层材料,又可以兼做电子传输层材料的一种有机材料。


选择发光材料应满足下列条件: 

A.高量子效率的荧光特性,荧光光谱主要分布400nm~700nm可见光区域。

B.良好的半导体特性,即具有高的导电率,能传导电子或空穴或两者兼有。

C.好的成膜性,在几十纳米的薄层中不产生针孔。

D.良好的热稳定性。


按化合物的分子结构,有机发光材料一般分为两大类:

(1)高分子聚合物,分子量10000~100000,通常是导电共轭聚合物或半导体共轭聚合物,可用旋涂方法成膜,制作简单,成本低,但其纯度不易提高,在耐久性,亮度和颜色方面比小分子有机化合物差。

(2) 小分子有机化合物,分子量为500~2000,能用真空蒸镀方法成膜,按分子结构又分为两类:


有机小分子化合物和配合物。

1) 有机小分子发光材料

主要为有机染料,具有化学修饰性强,选择范围广,易于提纯,量子效率高,可产生红、绿、蓝、黄等各种颜色发射峰等优点,但大多数有机染料在固态时存在浓度淬灭等问题,导致发射峰变宽或红移,所以一般将它们以低浓度方式掺杂在具有某种载流子性质的主体中,主体材料通常与ETM和HTM层采用相同的材料。掺杂的有机染料,应满足以下条件:

a. 具有高的荧光量子效率

b. 染料的吸收光谱与主体的发射光谱有好的重叠,即主体与染料能量适配,从主体到染料能有效地能量传递;

c. 红绿兰色的发射峰尽可能窄,以获得好的色纯;

d. 稳定性好,能蒸发。


(1)红光材料)I4 k9 S) L8 t

主要有:罗丹明类染料,DCM,DCT,DCJT,DCJTB,DCJTI和TPBD等

(2)绿光材料

主要有:香豆素染料Coumarin6(Kodak公司第一个采用),奎丫啶酮(quinacridone,( Z$d$QA)(先锋公司专利),六苯并苯(Coronene),苯胺类(naphthalimide).

(3)蓝光材料


主要有:N-芳香基苯并咪唑类;1,2,4-三唑衍生物(TAZ)(也是ETM材料);1,3-4-噁二唑的衍生物OXD-(P-NMe2)(高亮度;1000cd/m2);双芪类(Distyrylarylene);BPVBi(亮度可达6000 cd/m2。3


2) 配合物发光材料


金属配合物介于有机与无机物之间,既有有机物的高荧光量子效率,又有无机物的高稳定性,被视为最有应用前景的一类发光材料。


常用金属离子有;Be2+ Zn2+ Al3+ Ca3+ In3+ Tb3+ Eu3+ Gd3+等+ d


主要配合物发光材料有:8-羟基喹啉类,10-羟基苯并喹啉类,Schiff碱类,-羟基苯并噻唑(噁唑)类和羟基黄酮类等。

器件封装工艺 


OLED器件的有机薄膜及金属薄膜遇水和空气后会立即氧化,使器件性能迅速下降,因此在封装前决不能与空气和水接触。因此,OLED的封装工艺一定 要在无水无氧的、通有惰性气体(如氩气)的手套箱中进行。封装材料包括粘合剂和覆盖材料。粘合剂使用紫外固化环氧固化剂,覆盖材料则采用玻璃封盖,在封盖内加装干燥剂来吸附残留的水分。下图为由于水分入侵造成有机层的破坏。


白光OLED实现方式





柔性衬底材料


柔性和刚性OLED器件的最大区别并非是功能材料,而是衬底材料。刚性OLED通常采用玻璃作为衬底材料,而柔性OLED则使用塑料基底作为柔性衬底。目前衬底材料的筛选需要考虑的因素包括热承受温度和耐水氧穿透特性,以及膨胀特性等。


柔性基底的耐温特性通常与OLED的制备工艺相关,在OLED器件制备工艺中,包括半导体层和有机功能层多采用热蒸镀工艺来制备,工艺温度高于400℃。普通的塑料衬底在这个温度难以保持稳定。目前,聚酰亚胺(PI)能够实现更好的耐热性和稳定性,因此广泛作为OLED的柔性显示衬底材料。然而,普通的聚酰亚胺材料呈现出透明黄色,这限制了底部发光OLED中的应用。针对这个问题,目前市场已经有透明聚酰亚胺材料可以规避这个问题。


此外,聚酰亚胺的另一个缺点,而这也是所有聚合物材料所面临的问题,即为较高的水蒸气传输速率(WVTR)。较高的水分传输速率意味着水分将通过聚合物层以破坏TFT特性,甚至降低OLED性能。通常无机材料具有较低的传输速率,然而刚性结构难以适用于柔性OLED器件。近期的研究表明,通过制备聚合物/纳米无机的多层叠层结构可以极大改善纯聚合物材料的水汽传输特性,并且能够保持柔性可弯曲。近期的研究人员制备了基于PI/无机材料的叠层衬底材料,研究结果表明,叠层结构表现出比单层PI基板更低的WVTR系数。实际测试中,叠层结构衬底的OLED样品中,384小时依然保持良好的工作稳定性,没有明显的暗点和坏点产生。相反,在相同测试条件下,单层PI衬底的OLED器件性能衰减明显,有许多暗点和坏点产生。

叠层结构衬底材料的另外一个优势就是膨胀稳定性。图1的结果是不同的衬底材料在不同的变化温度下的尺寸变化情况。从图中可以明显看出,叠层结构在高温下表现出比单层基板低的尺寸变化,其膨胀特性接近玻璃,充分表明这种结构能够实现良好的工艺匹配性。


薄膜封装


薄膜封装是影响OLED特性的关键工艺之一。研究结果表明,多层薄膜封装(TFE)为柔性OLED显示器提供了良好的水氧隔绝特性。然而,TFE的阻挡层通常会在反复的弯曲过程中产生较大的应力变化从而破坏。因此,如何进行良好的薄膜封装结构设计来缓解弯曲中产生的应力的破坏。目前的方案是在弯曲应力集中的区域放置阻挡层结构,目的是是通过调节薄膜封装结构的结构和厚度,来平衡由弯曲引起的应力。


薄膜封装工艺对于微粒子的覆盖能力也是评价封装工艺的标准之一。在图4中展示了多层封装工艺对于颗粒的覆盖效果。实验中中设计了一个尺寸为11um高度的聚苯乙烯(PS)微粒子,并使用三层TFE来对PS粒子进行封装补偿。同时测试了不同厚度的有机层的补偿能力。分别使用无机材料和有机材料作为封装层,封装测过的厚度为8.2um和10um才可以实现覆盖PS粒子,并可以为内部环境和空间提供良好的密封特性。然而,较低的封装层厚度意味着顶部的应力集中现象更加明显,长期使用稳定性会面临更大的考验。